skip navigation

S M L Text size
Home » Challenge to Identify Audacious Goals in Vision Research and Blindness

NEI Challenge Home | About the Challenge | How to Enter | Selection of Winners | Additional Information | Frequently Asked Questions

NEI Challenge to Identify Audacious Goals in Vision Research and Blindness Rehabilitation

The submission deadline has passed.

Geographic distribution of entries to the NEI Challenge prize competition. Red stars represent the winners.
Geographic distribution of entries to the NEI Challenge prize competition. Red stars represent the winners. View a larger version of this image.

The winners have been selected:

Dennis Clegg, University of California, Santa Barbara, Calif.
Regenerative Therapy for Retinal Disease
To treat degenerative retinal disease with an off-the-shelf tissue graft that could be implanted in the back of the eye to replace cells lost to disease.

Robert Duvoisin, Oregon Health and Science University, Portland, Ore.
Restoration of Vision by Opto-electronic Stimulation
To restore vision by making nerve cells in the eye sensitive to light so that images captured by a camera can be converted to nerve signals that are sent to the brain.

Yingbin Fu, University of Utah, Salt Lake City, Utah
Precise Gene Editing In Vivo
To permanently correct any disease-associated mutations in a patient through the use of molecules that are specially designed to target mutated DNA sequences and that can be delivered safely and efficiently into the eye.

Steven Pittler, University of Alabama, Birmingham, Ala.
Using Molecular Scissors Genome Editing to Cure Ocular Genetic Disease
To permanently correct gene defects in patients at the site of the mutation using molecules that act like scissors to precisely replace genome errors with the correct DNA sequence.

Rajesh Rao, Washington University School of Medicine in St. Louis and The Retina Institute, St. Louis, Mo.
An Audacious Goal: Reprogramming the Retina
To directly reprogram easy-to-isolate skin or blood cells to retinal cells using gene therapy and other techniques to enable repair strategies for degenerative retinal diseases.

Tonia Rex, Vanderbilt University, Nashville, Tenn.
Functional and Structural Neuroregeneration
To restore functional vision in patients who experience loss of axons-the threadlike extensions of a nerve cell that conduct electrical impulses-from the optic nerve as a result of traumatic optic neuropathy or glaucoma by complete axon regeneration.

Julia Richards, University of Michigan, Ann Arbor, Mich.
Fountains of Youth for the Eye
To turn back the aging process in the eye so that ocular diseases like age-related macular degeneration or glaucoma start 10, 20, or 30 years later than they now do.

Jeffrey Stern, Capital Region Retina, PLLC, Albany, N.Y.
Endogenous Retinal Repair: Releasing our Inner Salamander
To repair the retina by activating stem cells residing within the eye, awakening reparative processes that occur naturally in amphibians and other animals but which lay dormant in human patients.

Russell Van Gelder, University of Washington, Seattle, Wash.
Reversing Retinal Blindness Using Small Molecules
To restore vision to patients with retinal diseases through the use of a photoswitch, a small molecule that is chemically modified to become active or inactive after exposure to certain wavelengths of light.

Janey Wiggs, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass.
Vision BioBank - A Network of Ocular Phenotyping Centers Using Genomic and Epidemiologic Data to Promote Personalized Ophthalmology
To create a network of biobanks that collect corresponding phenotype (physical characteristics) and genotype (genetic) data of people with certain eye diseases; the biobanks could be used for a wide range of studies, including the development of sensitive and specific gene tests that could accurately determine a person's risk for glaucoma, age-related macular degeneration, diabetic retinopathy, and other common complex blinding diseases as well as their likely response to certain therapies.

The judges for the competition were:

Christopher Austin, MD (National Center for Advancing Translational Sciences, NIH)
Robert Balaban, PhD (National Heart, Lung, and Blood Institute, NIH)
Brian Brooks, MD, PhD (National Eye Institute, NIH)
Emily Chew, MD (National Eye Institute, NIH)
Mary Frances Cotch, PhD (National Eye Institute, NIH)
Bruce Cumming, PhD (National Eye Institute, NIH)
Donald Gagliano, MD (Department of Defense)
William Gahl, MD, PhD (National Human Genome Research Institute, NIH)
Michael Gottesman, MD (National Cancer Institute and Office of the Director, NIH)
Story Landis, PhD (National Institute of Neurological Disorders and Stroke, NIH)
Robert Nussenblatt, MD (National Eye Institute, NIH)
Anand Swaroop, PhD (National Eye Institute, NIH)
M. Roy Wilson, MD (National Institute on Minority Health and Health Disparities, NIH)

For more information, please visit the NEI Audacious Goals Development Meeting.

Read more information about the Selection Process.

Last Updated: February 2013



Department of Health and Human Services NIH, the National Institutes of Health USA.gov